Synapse-associated protein-97 isoform-specific regulation of surface AMPA receptors and synaptic function in cultured neurons.

نویسندگان

  • Gavin Rumbaugh
  • Gek-Ming Sia
  • Craig C Garner
  • Richard L Huganir
چکیده

Members of the synapse-associated protein-97 (SAP97) family of scaffold proteins have been implicated as central organizers of synaptic junctions to build macromolecular signaling complexes around specific postsynaptic neurotransmitter receptors. In this regard, SAP97 has been suggested to regulate the synaptic localization of glutamate receptor type 1 subunits of the AMPA-type glutamate receptors. To test this hypothesis directly, we assessed the effects of SAP97 overexpression on surface expression of synaptic AMPA receptors. We find that recombinant SAP97 not only becomes concentrated at synaptic junctions but also leads to an increase in synaptic AMPA receptors, spine enlargement, and an increase in miniature EPSC (mEPSC) frequency, indicating that SAP97 has both postsynaptic and presynaptic effects on synaptic transmission. Synaptic targeting of SAP97, increased surface AMPA receptors, and increased mEPSC frequency are dependent on the presence of specific alternatively spliced sequences in SAP97 that encode a protein 4.1 binding site. These results suggest that SAP97 can affect the synaptic recruitment of AMPA receptors and spine morphology and that these effects may be regulated by alternative splicing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SynDIG1: An Activity-Regulated, AMPA- Receptor-Interacting Transmembrane Protein that Regulates Excitatory Synapse Development

During development of the central nervous system, precise synaptic connections between presynaptic and postsynaptic neurons are formed. While significant progress has been made in our understanding of AMPA receptor trafficking during synaptic plasticity, less is known about the molecules that recruit AMPA receptors to nascent synapses during synaptogenesis. Here we identify a type II transmembr...

متن کامل

Role for A kinase-anchoring proteins (AKAPS) in glutamate receptor trafficking and long term synaptic depression.

Expression of N-methyl d-aspartate (NMDA) receptor-dependent homosynaptic long term depression at synapses in the hippocampus and neocortex requires the persistent dephosphorylation of postsynaptic protein kinase A substrates. An attractive mechanism for expression of long term depression is the loss of surface AMPA (alpha-amino-3-hydroxy-5-methylisoxazale-4-propionate) receptors at synapses. H...

متن کامل

Astrocytes increase the activity of synaptic GluN2B NMDA receptors

Astrocytes regulate excitatory synapse formation and surface expression of glutamate AMPA receptors (AMPARs) during development. Less is known about glial modulation of glutamate NMDA receptors (NMDARs), which mediate synaptic plasticity and regulate neuronal survival in a subunit- and subcellular localization-dependent manner. Using primary hippocampal cultures with mature synapses, we found t...

متن کامل

Leucine-Rich Repeat Transmembrane Proteins Are Essential for Maintenance of Long-Term Potentiation

Leucine-rich repeat transmembrane proteins (LRRTMs) are synaptic cell adhesion molecules that trigger excitatory synapse assembly in cultured neurons and influence synaptic function in vivo, but their role in synaptic plasticity is unknown. shRNA-mediated knockdown (KD) of LRRTM1 and LRRTM2 in vivo in CA1 pyramidal neurons of newborn mice blocked long-term potentiation (LTP) in acute hippocampa...

متن کامل

Acute knockdown of AMPA receptors reveals a trans-synaptic signal for presynaptic maturation.

Newly formed glutamatergic synapses often lack postsynaptic AMPA-type glutamate receptors (AMPARs). Aside from 'unsilencing' the postsynaptic site, however, the significance of postsynaptic AMPAR insertion during synapse maturation remains unclear. To investigate the role of AMPAR in synapse maturation, we used RNA interference (RNAi) to knockdown AMPARs in cultured hippocampal neurons. Surpris...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 11  شماره 

صفحات  -

تاریخ انتشار 2003